乔山办公网我们一直在努力
您的位置:乔山办公网 > excel表格制作 > 用matlab优化工具箱自带的<em>遗传算法</em>(只能找到近似最优解)...

用matlab优化工具箱自带的<em>遗传算法</em>(只能找到近似最优解)...

作者:乔山办公网日期:

返回目录:excel表格制作


智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。
1、人工神经网络算法
“人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
几种典型神经网络简介
1.1 多层感知网络(误差逆传播神经网络)
在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络,即:输入层I、隐含层(也称中间层)J和输出层K。相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接。
但BP网并不是十分的完善,它存在以下一些主要缺陷:学习收敛速度太慢、网络的学习记忆具有不稳定性,即:当给一个训练好的网提供新的学习记忆模式时,将使已有的连接权值被打乱,导致已记忆的学习模式的信息的消失。?
1.2 竞争型(KOHONEN)神经网络
它是基于人的视网膜及大脑皮层对剌激的反应而引出的。神经生物学的研究结果表明:生物视网膜中,有许多特定的细胞,对特定的图形(输入模式)比较敏感,并使得大脑皮层中的特定细胞产生大的兴奋,而其相邻的神经细胞的兴奋程度被抑制。对于某一个输入模式,通过竞争在输出层中只激活一个相应的输出神经元。许多输入模式,在输出层中将激活许多个神经元,从而形成一个反映输入数据的“特征图形”。竞争型神经网络是一种以无教师方式进行网络训练的网络。它通过自身训练,自动对输入模式进行分类。竞争型神经网络及其学习规则与其它类型的神经网络和学习规则相比,有其自己的鲜明特点。在网络结构上,它既不象阶层型神经网络那样各层神经元之间只有单向连接,也不象全连接型网络那样在网络结构上没有明显的层次界限。它一般是由输入层(模拟视网膜神经元)和竞争层(模拟大脑皮层神经元,也叫输出层)构成的两层网络。两层之间的各神经元实现双向全连接,而且网络中没有隐含层。有时竞争层各神经元之间还存在横向连接。竞争型神经网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并且只将与获胜神经元有关的各连接权值进行修正,使之朝着更有利于它竞争的方向调整。神经网络工作时,对于某一输入模式,网络中与该模式最相近的学习输入模式相对应的竞争层神经元将有最大的输出值,即以竞争层获胜神经元来表示分类结果。这是通过竞争得以实现的,实际上也就是网络回忆联想的过程。
除了竞争的方法外,还有通过抑制手段获取胜利的方法,即网络竞争层各神经元抑制所有其它神经元对输入模式的响应机会,从而使自己“脱颖而出”,成为获胜神经元。除此之外还有一种称为侧抑制的方法,即每个神经元只抑制与自己邻近的神经元,而对远离自己的神经元不抑制。这种方法常常用于图象边缘处理,解决图象边缘的缺陷问题。
竞争型神经网络的缺点和不足:因为它仅以输出层中的单个神经元代表某一类模式。所以一旦输出层中的某个输出神经元损坏,则导致该神经元所代表的该模式信息全部丢失。
1.3 Hopfield神经网络
1986年美国物理学家J.J.Hopfield陆续发表几篇论文,提出了Hopfield神经网络。他利用非线性动力学系统理论中的能量函数方法研究反馈人工神经网络的稳定性,并利用此方法建立求解优化计算问题的系统方程式。基本的Hopfield神经网络是一个由非线性元件构成的全连接型单层反馈系统。
网络中的每一个神经元都将自己的输出通过连接权传送给所有其它神经元,同时又都接收所有其它神经元传递过来的信息。即:网络中的神经元t时刻的输出状态实际上间接地与自己的t-1时刻的输出状态有关。所以Hopfield神经网络是一个反馈型的网络。其状态变化可以用差分方程来表征。反馈型网络的一个重要特点就是它具有稳定状态。当网络达到稳定状态的时候,也就是它的能量函数达到最小的时候。这里的能量函数不是物理意义上的能量函数,而是在表达形式上与物理意义上的能量概念一致,表征网络状态的变化趋势,并可以依据Hopfield工作运行规则不断进行状态变化,最终能够达到的某个极小值的目标函数。网络收敛就是指能量函数达到极小值。如果把一个最优化问题的目标函数转换成网络的能量函数,把问题的变量对应于网络的状态,那么Hopfield神经网络就能够用于解决优化组合问题。
对于同样结构的网络,当网络参数(指连接权值和阀值)有所变化时,网络能量函数的极小点(称为网络的稳定平衡点)的个数和极小值的大小也将变化。因此,可以把所需记忆的模式设计成某个确定网络状态的一个稳定平衡点。若网络有M个平衡点,则可以记忆M个记忆模式。
当网络从与记忆模式较靠近的某个初始状态(相当于发生了某些变形或含有某些噪声的记忆模式,也即:只提供了某个模式的部分信息)出发后,网络按Hopfield工作运行规则进行状态更新,最后网络的状态将稳定在能量函数的极小点。这样就完成了由部分信息的联想过程。
Hopfield神经网络的能量函数是朝着梯度减小的方向变化,但它仍然存在一个问题,那就是一旦能量函数陷入到局部极小值,它将不能自动跳出局部极小点,到达全局最小点,因而无法求得网络最优解。
-----------------------------------------------------
2、遗传算法
遗传算法(Genetic Algorithms)是基于生e799bee5baa6e997aee7ad94e78988e69d83333物进化理论的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。它是在70年代初期由美国密执根(Michigan)大学的霍兰(Holland)教授发展起来的。1975年霍兰教授发表了第一本比较系统论述遗传算法的专著《自然系统与人工系统中的适应性》(《Adaptation in Natural and Artificial Systems》)。遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。迄今为止,遗传算法是进化算法中最广为人知的算法。
近几年来,遗传算法主要在复杂优化问题求解和工业工程领域应用方面,取得了一些令人信服的结果,所以引起了很多人的关注。在发展过程中,进化策略、进化规划和遗传算法之间差异越来越小。遗传算法成功的应用包括:作业调度与排序、可靠性设计、车辆路径选择与调度、成组技术、设备布置与分配、交通问题等等。
2.1 特点
遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为: ① 首先组成一组候选解 ② 依据某些适应性条件测算这些候选解的适应度 ③ 根据适应度保留某些候选解,放弃其他候选解 ④ 对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的 容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。
(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。
2.2 运用领域
前面描述是简单的遗传算法模型,可以在这一基本型上加以改进,使其在科学和工程领域得到广泛应用。下面列举了一些遗传算法的应用领域: ① 优化:遗传算法可用于各种优化问题。既包括数量优化问题,也包括组合优化问题。 ② 程序设计:遗传算法可以用于某些特殊任务的计算机程序设计。 ③ 机器学习:遗传算法可用于许多机器学习的应用,包括分类问题和预测问题等。 ④ 经济学:应用遗传算法对经济创新的过程建立模型,可以研究投标的策略,还可以建立市场竞争的模型。 ⑤ 免疫系统:应用遗传算法可以对自然界中免疫系统的多个方面建立模型,研究个体的生命过程中的突变现象以及发掘进化过程中的基因资源。 ⑥ 进化现象和学习现象:遗传算法可以用来研究个体是如何学习生存技巧的,一个物种的进化对其他物种会产生何种影响等等。 ⑦ 社会经济问题:遗传算法可以用来研究社会系统中的各种演化现象,例如在一个多主体系统中,协作与交流是如何演化出来的。
-----------------------------------------------------------------

3、模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
--------------------------------------------------------

4、群体(群集)智能(Swarm Intelligence)
受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群集智能的研究。群集智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解”。而所谓群集智能指的是“无智能的主体通过合作表现出智能行为的特性”。群集智能在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。
群集智能的特点和优点:群体中相互合作的个体是分布式的(Distributed),这样更能够适应当前网络环境下的工作状态; 没有中心的控制与数据,这样的系统更具有鲁棒性(Robust),不会由于某一个或者某几个个体的故障而影响整个问题的求解。可以不通过个体之间直接通信而是通过非直接通信(Stimergy)进行合作,这样的系统具有更好的可扩充性(Scalability)。由于系统中个体的增加而增加的系统的通信开销在这里十分小。系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性(Simplicity)。因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
在计算智能(Computational Intelligence)领域有两种基于群智能的算法,蚁群算法(Ant Colony Optimization)和粒子群算法(Particle Swarm Optimization),前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。
4.1 蚁群优化算法
受蚂蚁觅食时的通信机制的启发,90年代Dorigo提出了蚁群优化算法(Ant Colony Optimization,ACO)来解决计算机算法学中经典的“货郎担问题”。如果有n个城市,需要对所有n个城市进行访问且只访问一次的最短距离。
在解决货郎担问题时,蚁群优化算法设计虚拟的“蚂蚁”将摸索不同路线,并留下会随时间逐渐消失的虚拟“信息素”。虚拟的“信息素”也会挥发,每只蚂蚁每次随机选择要走的路径,它们倾向于选择路径比较短的、信息素比较浓的路径。根据“信息素较浓的路线更近;的原则,即可选择出最佳路线。由于这个算法利用了正反馈机制,使得较短的路径能够有较大的机会得到选择,并且由于采用了概率算法,所以它能够不局限于局部最优解。
蚁群优化算法对于解决货郎担问题并不是目前最好的方法,但首先,它提出了一种解决货郎担问题的新思路 其次由于这种算法特有的解决方法,它已经被成功用于解决其他组合优化问题,例如图的着色(Graph Coloring)以及最短超串(Shortest Common Supersequence)等问题。
4.2 粒子群优化算法
粒子群优化算法(PSO)是一种进化计算技术(Evolutionary Computation),有Eberhart博士和Kennedy博士发明。源于对鸟群捕食的行为研究。
PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。

要想得到较精确的最优解,可以通过设定Function tolerance的误差值,Constraint tolerance的误差值。


函数7a64e59b9ee7ad94365值域最值常用的方法
1) 利用基本函数求值域法:有的函数结构并不复杂,可以通过基本函数的值域及不等式的性质直接观察出函数的值域 例1:y=1/(2+)
2) 反函数法:用函数和它的反函数的定义域和值域的关系,可以通过求反函数的定义域而得到原函数的值域. 对形如y=(cx+d)/(ax+b) (a=!0)的函数可用此法 例2:y=(2x-1)/(2x+1) ; y=(5x-1)/(4x+2) , x属于[-3,-1].
3) 配方法:配方法是求“二次函数类”值域的基本方法,形如F(x)=a[f2(x)+bf(x)+c]的值域问题,均使用配方法。
4) 换元法运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而给出原函数的值域,形如y=ax+b(cx+d)(1/2) (a,b,c,d均为常数,且a=!0)的函数常用此方法求解(注意1新元的取值范围,即换元后的等价性2换元后的可操作性) 例4已知函数f(x)=2x(1/2)+(4-x)(1/2),则函数f(x)的值域_________
5) 判别式法将函数转化为x 的二次方程F(x,y)=0,通过方程有实根,判别式>=0,从而求得函数的值域,形如 (a1,a2不同时为0)的函数的值域常用此法求解。(分子,分母没有公因式;此时函数的定义域是全体实数)例5:;
6) 不等式法:利用基本不等式: 应用此法注意条件“一正二定三相等”例6:若函数f(x)的值域为[1/2,3],则函数F(x)=f(x)+的值域为_____
7) 数形结合法:若函数的解析式的几何意义较明显,诸如距离,斜率等,可用数形结合的方法。 例7:对a,bR.设max{a,b}=求函数f(x)=max{},的最小值
8) 导数法:
9) 已知函数的值域,求函数中待定字母的取值范围 9例9:已知函数f(x)=的定义域,值域是[0,2],求m,n的值域。

函数的图像
1:函数图像的基本做法:1)描点法
2) 图像变换法
3) 做图像的一般步骤:a求出函数的定义域;b讨论函数的性质(奇偶性,周期性)以及函数上的特殊点(如渐近线,对称轴)c利用基本函数的图像画出所给函数的图像
2:函数变换的四种形式:
1)平移变换左加右减
2)对称变换 a:y=f(x)和y=f(-x); y=-f(x)和y=f(x); y=-f(-x)和y=f(x); y=和y=f(x)分别关于y轴,x轴,原点,直线y=x对称。
b:若对定义域内的一切x均有f(x+m)=f(m-x),则y=f(x)的图像关于x=m对称;
c:y=f(x)与y=2b-f(2a-x)关于点(a,b)成中心对称
3)伸缩变换:y=af(x) y=f(ax)
4)翻折变换 y= y=f()
3函数图像的对称性
1) f(-x)=-f(x) 图像关于原点对称
2) f(-x)=f(x) 图像关于y轴对称
3) y=和y=f(x) 图像关于y=x对称
4) f(a+x)=f(a-x) 图像关于x=a对称
5) f(a+x)=-f(a-x) 图像关于(a,0)对称

函数单调性
判断函数单调性的常用方法:
1) 定义法
2) 两增(减)函数的和还增(减);增(减)函数与减(增)函数的差还是增(减)函数;
3) 减函数在对称的两个区间上具有相同的单调性;偶函数在对称的两个区间上具有相反的单调性、
4) y=f(x)在D上单调则y=f(x)在D的子区间上也单调,并且具有相同的单调性。
5) y=f(u),u=g(x)单调性相同,则y=f(g(x))是增函数;单调性相反,则y=f(g(x))是减函数(同增异减);
6) 互为反函数的两个函数具有相同的单调性
7) 利用导数判断函数的单调性
8) 抽象函数的单调性:做差;做商(注意分母不为零且同号)。
9) 关于函数f(x)=x+a/x(a>0)单调性及应用

例1:函数在定义域上是减函数
例2: 已知函数f(x)=+a/x在[2,+)单调增,求a的取值范围
例3:函数f(x)=,g(x)=x(2-x)的单调区间
例4:函数f(x)对任意的 都有f(a+b)=f(a)+f(b)-1,并且当 x>0是,f(x)>1,求证f(x)是R上的增函数。
例5:某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管及其他费用为平均每吨每天三元,购买面粉每次需要支付运费900元。
(1) 求该厂每隔多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买的面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?说明原因。
例6:已知f(x)为R上的减函数,求满足< f(1)的实数x的取值范围。
例7:是否存在实数a是函数f(x)= 在[2,4]上市增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由。

函数的奇偶性
1:定义:y=f(x), 定义域关于原点对称
偶函数:f(-x)=f(x)
奇函数:f(-x)=-f(x) (原点有定义有f(0)=0)
2奇函数,偶函数的图像的性质:
奇函数图像关于原点对称;
偶函数图像关于y轴对称。
3判断奇偶性方法
1) 定义
2) 定义变形:f(-x)+f(x)=0()为奇函数; f(-x)-f(x)=0()为偶函数。
3) 函数奇偶性满足下列性质:奇+奇=奇;偶+偶+偶;
奇*奇=偶;偶*偶=偶;奇*偶=奇。
4)奇函数在对称的单调区间内有相同的单调性; 偶函数在对称的单调区间内有相反的单调性。

周期公式:
1:若函数关于直线x=a和直线x=b对称。则函数f(x)为周期函数,2是它的一个周期;
2:若函数关于点(a,0)和(b,0)对称。则函数f(x)为周期函数,2是它的一个周期;
3若函数关于点(a,0)和直线x=b对称。则函数f(x)为周期函数,4是它的一个周期;

例1:f(x)=lg()
例2:
例3:
例4:
例5:在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]是减函数,讨论f(x)[-2,-1]和[3,4]上的单调性。
例6:已知f(x)是偶函数,且在[)是增函数,如果f(ax+1)f(x-2)在x[1/2,1]恒成立,求实数a的取值范围
例7:已知 其中a,b,c,d为常数,若f(-7)=-7.求f(7).

周期公式:
1:若函数关于直线x=a和直线x=b对称。则函数f(x)为周期函数,2是它的一个周期;
2:若函数关于点(a,0)和(b,0)对称。则函数f(x)为周期函数,2是它的一个周期;
3若函数关于点(a,0)和直线x=b对称。则函数f(x)为周期函数,4是它的一个周期;
求函数解析式常用方法:
(1)定义法:有已知条件f[g(x)]=F(x),可将F(x),改写成g(x)的表达式,然后以x代替g(x), 使得f(x)的表达式常需“凑配”。
例1:f((1-x)/(1+x))=(1-x2)/(1+x2).求f(x)的解析表达式。
(2)变量代换法:有已知条件f[g(x)]=F(x),令t=g(x),然后反解出x=g-1(t).带入F(x),即可得f(x)的表达式。
例2:f(e x-1)=2x2-1.求f(x)的解析表达式
(3)待定系数法:又是给定函数特征求函数的解析式,可用待定系数法。例3:函数是二次函数可设为f(x)=ax2+bx+c(a不等于零)。期中a,b,c是待定系数,根据题设条件列出方程组,解出a.b.c
.例3;设二次方程f(x)满足f(x-2)=f(-x-2)。且图像在y轴上的截距为1,被x轴截得的线段长为2*2(1/2),求f(x)的解析式。
(4)函数方程法:将f(x)作为一个未知量来考虑,建立方程组。消去另外的未知量便得f(x)的表达式。 例4::已知f(x)-f(1/x)lnx=1,求解f(x)的表达式
(5) 参数法:引入某个参数,然后写出用这个参数表示变量的式子(即参数方程),再消去参数就得f(x)表达式。 例5:已知 f(3sinx)=cot(2)x求f(x)的表达式
(6)赋值法:对于抽象函数f(x),如果满足条件中对一切实属成立。那么对于特殊值仍然成立。我们就可以赋予特殊值。 例6:已知f(x)满足:f(0)=1,且对任意的x,y属于R都有f(xy+1)=f(x)f(y)-f(y)+x-2求f(x).
(7) 根据某实际问题建立一种函数关系式,这种情况须引入合适的变量,根据数学的有关知识找出函数关系式。
一次二次函数
1 一次函数
a形如y=kx+b 叫做一次函数值域R;b=0,y=kx叫做正比例函数
b一次函数的k叫做直线y=kx+b的斜率,b叫做y=kx+b的截距。
c函数图像(性质):

1已知函数y=(2m-1)x+1-3m,求m为何值时:
这个函数为正比例函数;
(2)这个函数为奇函数
(3)函数值y随x的增大而减小
2一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴上方,且y随x的增大而减小,则a的取值范围______.
3已知函数f(x)=2mx+4,若在[-2,1]上存在,使得f()=0,求实数m的取值范围。
4关于x的方程ax+1=|x|有两个不同的实根,求实数a的取值范围

2 二次函数
a形如 叫做二次函数
值域 a>0 ; a<0
b二次函数有三种形式 A: 一般式
B :顶点式
C 两根式
c二次函数的基本概念: 1对称轴
2顶点坐标 3零点(根)
4韦达定理 5
d 一元二次方程的判别式
e函数图像:(性质)

1已知二次函数f(x)满足f(2)=-1,f(-1)=-1,f(x)的最大值是8,试确定二次函数
2二次函数的顶点坐标(2,3)且经过点(3,1)求这个二次函数的解析式
3已知抛物线与x轴交与点A(-1,0),B(1,0),并经过点(0,1),求抛物线的解析式
4已知二次函数f(x),当x=2时有最大值16,他的图像截x轴所得的线段长为8,求解析式
5二次函数的图像如图所示,则点P(a, )第几象限_____
6以为自变量的二次函数,m为不小于0的整数,它的图像与x轴交与点A和点B,A在原点的左边,B在原点的右边。求这个函数的解析式画出这个二次函数的草图
7如图,抛物线与x轴交与A,B两点且线段OA:OB=3:1则m=_______
8已知函数
(1) 求对一切x,f(x)的值恒为非负实数时a的取值范围;
(2) 在(1)的条件下,求方程的根的取值范围
9正方形CDEF的边长为4,截取一个角得五边形ABCDE,已知AF=2,BF=1,在AB上求一点P.使矩形PNDM有最大面积

函数的应用
1将进货单价为8元的商品按10元一个销售时,每天可卖100个,若这种商品价格每上涨一元,日销售量就减少10个,为了获得最大利润,此商品的销售单价应定为多少元?
2一次时装表演会预算中票价每张100元,容纳观众人数不超过2000元,毛利润y(百元)关于观众人数x(百人)之间的函数图像如右图所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列入成本费用):
(1)当观众人数不超过1000人时,毛利润y关于观众人数的函数解析式和成本费用 S(百元)关于观众人数x的函数解析式
(2)若要使这次表演会获得36000元的毛利润。那么需要售出多少张门票?需付成本费多少元?

3某蔬菜基地种植西红柿,有有历年市场行情得知,从2月1日起的300天内,西红柿的市场售价与上市时间的关系用下图(1)的一条折线表示。西红柿的种植成本与上市时间的关系用图(2)的抛物线表示。
(1)写出图(1)表示的市场售价与时间的函数关系P=f(t);写出图(2)表示的种植成本与时间的函数关系Q= g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
2函数的零点
函数的零点就是方程f(x)=0的实数根,也是函数的图像与x轴的交点的横坐标。零点概念体现了函数和方程之间的密切联系
勘根定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在,使得f(c)=0,这个c就是方程的f(x)=0 根

1函数f(x)=的零点是______
2函数的零点所在的大致区间是______
3已知函数的图像如右图所示,求b的取值范围______
4方程的两根分别在区间(2,3)(3,4)之间,求的取值范围

5方程有一非零根,方程有一非零根,求证方程必有一根介于之间
6求证方程在(0,1)内必有一个实数根

7函数的零点大致区间在_________
8已知函数恒有零点,求a的取值范围

9关于x的方程的一根比1大,一根比1小,求a的取值范围

10根据函数的性质,指出函数的零点所在的大致区间
二分法:不讲

A函数的性质应用
1已知定义域为R的函数是奇函数
(1)求a,b的值

1函数奇偶,单调性解决问题2脱掉f利用函数单调性3注意函数定义域的限制
(2)若对任意的不等式恒成立,求k的取值范围

2函数f(x)( )是奇函数,且当

时是增函数,若f(1)=0,求不等
式<0的解集

B待定系数法的应用
3已知二次函数f(x)二次项系数为a且不等式f(x)>-2x的解集为(1,3)
(1) 若方程f(x)+6a=0有两个相等的根,求f(x)的解析式
(2) 若f(x)的最大值为正数,求a的取值范围
4已知f(x)是二次函数,且不等式f(x)<0的解集是(0,5)且f(x)在区间[-1,4]上的最大值是12,求f(x) 的解析式
C有关恒成立问题
5设,且为方程f(x)=0的两个实根,若,不等式对任意实数恒成立,求m的值
6已知函数,
(1) 当a=,求f(x)的最小值、
(2) 若对任意恒成立,试求实数a的取值范围
7我国是一个水资源比较缺乏的国家之一,各地采用价格控制手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+损耗费
若每月用水量不超过最低限量a(),只付基本费8元和每月定额损耗费c元:若用水量超过a()时,除了付以上的基本费和损耗费外,超过部分每立方米付b元的超额费,已知每户每月的定额损耗费不超过5元;

遗传算法还有另一个收敛的判断标准,就是目前解不大可能再改善了。判断方法可以是解有好多轮都不改变了。
或者干脆人为设定一个足够大的迭代次数。

相关阅读

关键词不能为空
极力推荐

ppt怎么做_excel表格制作_office365_word文档_365办公网